Reg. No.								
----------	--	--	--	--	--	--	--	--

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE		
II	PART-III	CORE-4	P23MA204	ADVANCED ALGEBRA		

Date &	Sessio	n : 23.0	04.2025/AN Time : 3 hours	Maximum: 75 Marks	
Course	Bloom's K-level	Q. No.	<u>SECTION - A (10 X 1 = 10 Marks)</u> Answer <u>ALL Questions.</u>		
CO1	K1	1.	If L is a finite extension of F and K is a subfield of L va) $\binom{[K:F]}{[L:F]}$ b) $\binom{[L:F]}{[K:L]}$ c) there is no relation between F and L d) None of the subfield of L value L is a subfield of L value L in L i	F]	
CO1	K2	2.	Let F be the field, K be a finite extension of F then a) K is not a field b) K is isomorphic and E by E is isomorphic and E is isomorphic and E by E is isomorphic and E is in E in E is in E is in E in E is in E in E is in E in E in E is in E is in E in		
CO2	K1	3.	Let $f(x)$ be a polynomial over a field F , suppose $a \in F$ if a) $x + a$ divides $f(x)$ b) $x - a$ divides $f(x)$ c) $x + a$ does not divides $f(x)$ d) $x - a$ does not divides $f(x)$	(x)	
CO2	K2	4.	Suppose $f(x) \in F(x)$ is irreducible, if the characteristic a) $f(x)$ has no roots in F b) $f(x)$ has at least c) $f(x)$ has exactly roots in F d) $f(x)$ has no roots	of <i>F</i> is 0 then one roots in <i>F</i>	
CO3	K1	5.	Let K be a field, F be the subfield of K then the group K relative to F is a) Galois group E/F b) automorphic group of E/F c) isomorphic group of E/F d) permutation group	ap of <i>E/F</i>	
CO3	K2	6.	Which are the following properties being true in Galoi a) finite and normal b) finite, normal and c) infinite and normal d) finite and separate	l separable	
CO4	K1	7.	Any two finite fields having the same number of elemental Homomorphic by Homoeomorphic c) Isomorphic d) Isometric isomorphic		
CO4	K2	8.	Let <i>F</i> be a finite field, <i>G</i> be the group of non-zero elem a) the additive group of <i>F</i> is not cyclic b) the additive group of <i>F</i> is cyclic c) the multiplicative group of <i>F</i> is not cyclic d) the multiplicative group of <i>F</i> is cyclic	ents of F then	
CO5	K1	9.	The ring of integral quaternions is a) commutative but not associative b) associative bu c) both commutative and associative d) neither comm	ut not commutative nutative nor associative	
CO5	K2	10.	, , , ,	llowing is necessary condition e reducible over F ave no repeated roots	
Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B}{\text{Answer }} \text{ ALL } \text{Questions choosing eigenstates}$	•	
CO1	K2	11a.	The elements $a \in K$ is algebraic over F if and only if F (OR)	F(a) is a finite extension of F	
CO1	K2	11b.	If L is the algebraic extension of K and if K is the algebraic extension of F	ebraic extension of F then L is	

CO2	K2	12a.	Let $f(x) \in F(x)$ be of degree $n \ge 1$. Then there is an extension E of F of degree at
			most $n!$ in which $f(x)$ has n roots (OR)
CO2	K2	12b.	For any $f(x)$, $g(x) \in F[x]$ and any $\alpha \in F$,
CO2	KΖ	120.	(i) $(f(x) + g(x)' = f'(x) + g'(x)$
			(ii) $(\alpha f(x))' = \alpha f'(x)$
			(iii) $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$
CO3	КЗ	13a.	If K is a field and if $\sigma_1, \sigma_2, \dots, \sigma_n$ are distinct automorphisms of K then it is impossible
			to find elements $a_1, a_2, \dots a_n$ not all 0, in K such that $a_1\sigma_1(u), a_2\sigma_2(u), \dots a_n\sigma_n(u) = 0$
			$0, for all u \in K$
			(OR)
CO3	КЗ	13b.	K is a normal extension of F if and only if K is the splitting field of some polynomial
			over F
CO4	КЗ	14a.	For every prime number p and every positive integer m there exists a field having
			p^m elements
			(OR)
CO4	КЗ	14b.	If F is a finite field and $\alpha \neq 0$, $\beta \neq 0$ are two elements of F then we can find elements
			a and b in F such that $1 + \alpha a^2 + \beta b^2 = 0$
CO5	K4	15a.	Suppose that the field F has all nth roots of unity and suppose that $a \neq 0$ in F. Let
			$x^n - a \in F[x]$ and let K be its splitting filed over F. Then
			(i) $K = F(u)$ where u is any root of $x^n - a$
			(ii) The Galois group of $x^n - a$ over F is abelian
			(OR)
005	T7.4	1 71	Let C be the field of complex numbers and suppose that the division ring D is
CO5	K4	15b.	algebraic over C the $D = C$

Course Outcome	Bloom's K-level	Q. No	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \underline{\text{ALL}}} \text{ Questions choosing either (a) or (b)}$	
CO1	K4	16a.	Prove that, if L is the finite extension of K and if K is a finite extension of F , then L is a finite extension of F Moreover, $[L:F] = [L:K][K:F]$ (OR)	
CO1	K4	16b.	Prove that the number <i>e</i> is transcendental	
CO2	K5	17a.	The polynomial $f(x) \in F[x]$ has a multiple root if and only if $f(x)$ and $f'(x)$ have a nontrivial common factor (OR)	
CO2	K5	17b.	A polynomial of degree n over a field can have at most n roots in any extension field	
CO3	K5	18a.	The fixed field of G is the subfield o F . And $G(K,F)$ is the subgroup of the group of all automorphisms of K	
			(OR)	
CO3	K5	18b.	Let F_0 be the field of rational numbers. Let $\omega = e^{\frac{2\pi i}{5}}$ and ω satisfies the polynomial $x^4 + x^3 + x^2 + x + 1$ over F_0 , prove that the polynomial is irreducible over the field of rational numbers and therefore G $[K, F_0]$ is a group of order 4	
CO4	K5	19a.	Let G be a finite abelian group enjoying the property that the relation $x^n = e$ is satisfied by at most n elements of G , for every integer n . Then G is a cyclic group (OR)	
CO4	K5	19b.	State and Prove WEDDERBURN theorem	
CO5	K6	20a.	Prove that, every positive integer can be expressed as the sum of squares of four integers.	
			(OR)	
CO5	K6	20b.	Prove the following: 1. $x^{**} = x$ 2. $(\delta x + \gamma y)^* = \delta x^* + \gamma y^*$ 3. $(xy)^* = y^*x^*$ 4. $N(xy) = N(x)N(y)$ for all $x, y \in \mathbb{Q}$ and all real δ and γ	